
Bezeichnungen und Symbole 

Ax =£ h2(Iz — IaAz2)/d 
By =i h2lly 

C2 = ih2(Ix-Iakx2)/d in (1) 
Dxz =ih2 7« Xx hid 
F =ih2IxIz/(dIa) 
Ax =hh2/lx=ih*/ly ) 
Cz = 2 h,2/ (lz 7a) in (6) 
F =i h2 Izj [7A (7Z — 7 A ) ] J 
Qg = hh2lglg/d (g = x,z) 
d = l x ( l z - l a h 2 ) - l a l x 2 l z 
Ig Hauptträgheitsmomente (g = x,y,z) 
Ia Trägheitsmoment der Methylgruppe um Sym-

metrieachse 
"kg Richtungskosinus zwischen Torsionsachse und 

Hauptachse g 
Pg Komponente des Drehimpulses in Richtung 

Hauptachse g 
p= (h/i) d/da Drehimpuls der Methylgruppe 
F3 Höhe des Torsionspotentials 
a Torsionswinkel 
r Symmetriespezies der Gruppe D3: Ax, A2 , E 

der 

y Symmetriespezies der Vierergruppe V: 
A, Bx, By, Bz 

Uva(a) Eigenfunktion des tordierenden Oszillators 
(MATHiEU-Funktion) 

v Torsionsquantenzahl, in ( ) für Torsions-Rotations-
niveau 

o Symmetrieindex 
rjK-K+\y~\ Eigenfunktion des starren asymmetrischen 

Kreisels 
/Li Dipolmoment 
N( v ) a Normierungsfaktor 
a v v ' ^ ) Entwicklungskoeffizient (a = 0) 
EVV 'W Entwicklungskoeffizient ( a = + l ) 
QK-K + ^ Entwicklungskoeffizient 
SJKM Eigenfunktion des starren symmetrischen Kreisels 
bva Eigenwert des tordierenden Oszillators. 
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D O L P H für die kritische Durchsicht des Manuskripts. Der 
Deutschen Forschungsgemeinschaft und dem Fonds der 
Chemie danke ich für finanzielle Unterstützung. 

Übergangswahrscheinlichkeiten im Elektronen- und Schwingungsspektrum 
des Wasserstoffmoleküls 

J. GEIGER u n d M . TOPSCHOWSKY 

I. Physikalisches Institut der Technischen Universität Berlin 

(Z. Naturforsdig. 21 a, 626—634 [1966] ; eingegangen am 31. Januar 1966) 

The energy loss spectrum of electrons interacting with molecular hydrogen (natural and para 
hydrogen) has been measured by means of a high resolution technique recently developed. The 
primary electron energy was 30 keV, the energy resolution 0.01 eV. The spectra clearly show the 
rotational structure. F R A N C K - C O N D O N overlap integrals have been computed for the L Y M A N and 
W E R N E R bands using the W K B method and N A M I O K A ' S potential curves. The experimental band 
intensities agree with these theoretical values much better than with F R A N C K - C O N D O N factors obtain-
ed from M O R S E functions. Some small discrepancies for the L Y M A N bands may be referred to the 
dependence of the electron transition moment on the nuclear distance. In contrast to ultraviolet 
absorption spectra the predissociation edge at 14.7 eV could not be observed in the energy loss 
spectra. 

In einer früheren A r b e i t 1 wurde bereits das Ener-
gieverlustspektrum von Elektronen nach der Wech-
selwirkung mit molekularem Wasserstoff mit hoher 
Auf lösung untersucht. Es gelang, die Schwin-
gungsstruktur der Elektronensprungbanden aufzu-
lösen; insbesondere konnten die FRANCK—CONDON-
Faktoren der LYMAN- und WERNER-Banden aus den 
Spektren abgeschätzt und mit theoretischen Werten 
verglichen werden. Dabei zeigte es sich, daß für die 
L,YMAN-Banden der MoRSE-Ansatz keine gute Nähe-

1 J. G E I G E R , Z . Phys. 1 8 1 , 4 1 3 [ 1 9 6 4 ] . 
2 H . B O E R S C H , J. G E I G E R U . H . H E L L W I G , Phys. Letters 3 , 6 4 

[ 1 9 6 2 ] . 

rung ist. Inzwischen konnte das Auf lösungsvermö-
gen der A n o r d n u n g 2 ' 3 zur Messung von Energie-
verlusten mit monoenergetischen Elektronen in Test-
aufnahmen bis zu 0 ,007 eV verbessert werden. Mit 
dieser Anordnung wurde das Energieverlustspek-
trum von molekularem Wasserstoff nochmals auf-
genommen. Die Banden im Überlagerungsbereich 
der einzelnen Elektronensprungbanden sind nun 
besser getrennt, und es gelang auch, die Rotations-
struktur im Energieverlustspektrum aufzulösen 4 . 

3 H. B O E R S C H , J. G E I G E R U . W . STICKEL, Z . Phys. 1 8 0 , 4 1 5 

[ 1 9 6 4 ] . 
4 H. B O E R S C H , J. G E I G E R U. M. T O P S C H O W S K Y , Phys. Letters 1 7 , 

2 6 6 [ 1 9 6 5 ] . 
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1. Theorie 

Z u m Vergleich mit der Intensität im Energiever-
lustspektrum wird der theoretische „partikuläre Wir -
kungsquerschnitt" benötigt. Er wird durch Integra-
tion des differentiellen Wirkungsquerschnitts über 
den v o m Analysator erfaßten Streuwinkelbereich 

gewonnen. Der partikuläre Wirkungs-
querschnitt für die Anregung eines Wasserstoffmole-
küls v o m Grundzustand X l s © 1 ^ * mit dem Schwin-
gungsniveau v = 0 und dem Rotationsniveau J zum 
Zustand n v ' ] ' ist nach einer vorangegangenen Un-
tersuchung 4 gegeben durch 

4>jiG 

•In 1 + 

^ n ' v ' J ' 

2 En $ma e x p { - E j j ( k T ) } 
gJ. (1) 

E0, k0 sind die Energie und die Wellenzahl der ein-
fallenden Elektronen, a0 der BoHRsche Wasserstoff-
radius, E die Anregungsenergie (Energieverlust) 
und Qj- die Rotationszustandssumme. Der von der 
Temperatur T abhängige Faktor auf der rechten 
Seite der Gl. ( 1 ) ist der auf 1 normierte Bruchteil 
der Moleküle, die sich im Rotationsniveau E j des 
Grundzustandes befinden. Der Faktor G gibt die 
Entartung des angeregten Zustandes (^ . -Verdopp-
lung be im C- und D-Zustand) , gj die Entartung der 
Kernzustände an. In guter Näherung kann die Ge-
samtmoleküleigenfunktion als Produkt von Elektro-
nen-, Schwingungs- und Rotationseigenfunktion ge-
schrieben werden. Dann läßt sich das Quadrat des 
Übergangsmoments | aufspalten in 

I W V ' J ' I2 = | f<Pv ( Ä ) ( R ) <pv' ( R ) dR I2 I ! 2 . 

(2) 

Hierin sind <pv(R) und <pv'(R) die Schwingungs-
eigenfunktionen des Grundzustandes und des ange-
regten Zustandes, R der Kernabstand, 9te (R) das 
Elektronenübergangsmoment und | 9t j0/t |2 die R o -
tationslinienstärke. 

Über die Intensitäten der Rotationslinien in den 
einzelnen Schwingungsbanden im Energieverlust-
spektrum von molekularem Wasserstoff und ihre 
ausgezeichnete Übereinstimmung mit den theoreti-
schen, aus den HöNL-LoNDON-Formeln berechneten 
Wirkungsquerschnitten ist bereits in der vorange-
gangenen A r b e i t 4 berichtet worden. In den folgen-

den Überlegungen soll die Rotationsstruktur nicht 
berücksichtigt werden. Mit Hilfe der Summenregel 

2 I J0/T 1 2 = 1 ( 3 ) 
j' 

kann über alle Rotationsniveaus ] ' des angeregten 
Zustandes summiert werden. Die Summierung über 
alle Rotationsquantenzahlen ] im Grundzustand gibt 
für den temperaturabhängigen Faktor von Gl. ( 1 ) 
definitionsgemäß 1. Dann wird aus Gl. ( 2 ) 

i \2 = Pv,v'=\ f<Pv ( Ä ) ^ e ( R ) <Pv' ( Ä ) dR | 2 . ( 4 ) 

pv> v' heißt Bandenstärke. 
W i r d z. B. nach dem V o r g a n g von NICHOLLS und 

STEWART 5 S^e (7?) in Gl. ( 4 ) durch einen mittleren 
Wert 9te ersetzt und vor das Integral gezogen, er-
gibt sich für die relative Bandenstärke näherungs-
weise 

f | e - y ~qv,v' = \f<Pv(R)<Pv'(R) d /?| 2 . ( 5 ) 

qVt v' ist das Quadrat des Uberlappungsintegrals 
(FRANCK—CoNDON-Faktor). 

a) Uber gangs Wahrscheinlichkeiten für den 
Elektronensprung 

Für das vorl iegende Prob lem ist es zweckmäßiger, 
statt eines mittleren Elektronenübergangsmoments 
3TE das Elektronenübergangsmoment 9 T E ( / ? 0 ) für 
den Gleichgewichtsabstand im Grundzustand R0 ein-
zuführen. Es gilt nämlich nach ROSCOE 6 die Sum-
mation 
oo 

2 J > o ( Ä ) 9 t e ( Ä ) ? . ' ( Ä ) d Ä | * 
» ' = 0 

= / I ( Ä ) |:2 k o ( Ä ) 1:2 dÄ « I 3te (Äo) 12. (6 ) 
Die letzte F o r m ist eine gute Näherung, da, auch 
wenn sich Sie mit dem Kernabstand beträchtlich än-
dert, die Schwingungseigenfunktion für R = R0 ein 
so starkes M a x i m u m hat, daß für die Summe ohne 
großen Fehler |9t e (^o)| 2 geschrieben werden kann. 

Die Schwierigkeiten bei der Berechnung der Elek-
tronenübergangsmomente bestehen darin, geeignete 
Näherungen für die Elektroneneigenfunktionen 
aufzufinden. 

Inzwischen hat sich herausgestellt, daß in der Arbeit 
von ROSCOE 6 der Entartungsfaktor G = 2 für den C -
und D-Zustand fehlt. Die Berücksichtigung von G führt 
zu einer Verdopplung der differentiellen Wirkungsquer-

5 R . W . NICHOLLS u. A. L. STEWART in D . R . BATES, Atomic and 6 R . ROSCOE, Phil. Mag. 3 1 , 349 [1941]. 
Molecular Processes, Academic Press, New York und Lon-
don 1962, p. 47. 



schnitte für die Anregung des C- und D-Zustandes. 
Hierdurch ist auch die Diskrepanz zwischen den theore-
tischen und experimentellen unelastischen differentiel-
len Wirkungsquerschnitten in der früheren Arbe i t 1 

geklärt, so daß jetzt in dieser Hinsicht Übereinstim-
mung besteht. 

b) Intensitäten der Rotationsschwingungsbanden 

Die relativen Übergangswahrscheinlichkeiten in-
nerhalb einer Elektronensprungbande sind durch 
die Quadrate der Uberlappungsintegrale qVtV' nach 
Gl. ( 5 ) gegeben. Die Berechnung von qv>v' kann in 
vielen Fällen mit Hilfe des MoRSE-Potentials, z. B. 
nach einem von FRÄSER und JARMAIN 7 angegebenen 
Verfahren, erfolgen. Für die LYMAN-Banden ist das 
jedoch nicht möglich, da das MoRSE-Potential für 
die Potenitalkurve des B 2 p o 1 ^ u + -Zustandes eine 
schlechte Näherung ist. Jedoch können nach der Me-
t h o d e v o n RYDBERG, KLEIN u n d REES 8 ( R K R - M e -

thode) Potentialkurven aus spektroskopischen Da-
ten punktweise mit größerer Genauigkeit berechnet 
werden. NAMIOKA 9 hat unter Verwendung der Da-
ten seiner Absorptionsmessungen dieses Verfahren 
zur Berechnung einiger Potentialkurven des Wasser-

stoffmoleküls angewandt. Das Ergebnis zeigt A b b . 1. 
Diese Potentialkurven wurden den Rechnungen 

dieser Arbeit zugrunde gelegt und die Schwingungs-
eigenfunktionen des angeregten Zustandes cpv' nach 
dem WKB-Ver fahren (siehe Anhang) ermittelt. In 
A b b . 2 sind einige der auf diese Weise berechneten 
Eigenfunktionen des B-Zustandes dargestellt. Die 
in die Abb i ldung eingezeichneten Energieniveaus 
sind gleichzeitig die Abszissen der zugehörigen, 
maßstäblich eingezeichneten, normierten Eigenfunk-
tionen cpv'(R). 

Grundzustand des Wasserstoffmoleküls. 

Die Eigenfunktionen <pv(R) des Grundzustandes 
wurde analytisch aus dem MoRSE-Potential gewon-
nen, das die Potentialkurve dieses Zustandes für 
kleine Schwingungsquantenzahlen v gut beschreibt. 

Mit diesen Eigenfunktionen wurden die in Tab. 3 
zusammengestellten FRANCK-CoNooN-Faktoren be-
rechnet. Die numerischen Rechnungen wurden mit 
einem Digitalrechner Z U S E Z 23 am Recheninstitut 
der Technischen Universität Berlin durchgeführt 1 0 . 

Für den C 2p.-r; ^ u - Z u s t a n d stellt die MORSE-
Funktion eine recht gute Näherung dar. Jedoch wird 
sich auch hier zeigen, daß das WKB-Verfahren mit 
der genaueren RKR-Potentialkurve von NAMIOKA ZU 
noch besserer Übereinstimmung mit dem Experi-
ment führt (Tab . 4 ) . 

7 P. A . F R Ä S E R U . W . R . J A R M A I N , Proc. Phys. Soc. London 
A 66, 1145 [1953]. - W . R . J A R M A I N U. P. A. F R Ä S E R , Proc. 
Phys. Soc. London A 66, 1153 [1953]. 

8 R . R Y D B E R G , Z. Phys. 73, 376 [1931] ; 8 0 , 514 [1933]. -
0 . K L E I N , Z. Phys. 76, 226 [1932]. - A. L. G. R E E S , Proc. 
Phys. Soc. London 59, 998 [1947]. 

9 T. N A M I O K A , J . Chem. Phys. 43, 1636 [1965]. Wir danken 
Dr. T. N A M I O K A für das Ubersenden eines Vorabdruckes 
dieser Arbeit an Dr. H. J . R E I C H , der uns diesen freund-
licherweise überließ. 

10 Herrn Prof. Dr. K. JAECKEL sind wir für die Ermöglichung 
der Rechnung und Fräulein C H R . W A R N K E für ihre Durch-
führung zu großem Dank verpflichtet. 



2. Meßergebnisse 

In A b b . 3 ist das Energieverlustspektrum von 
natürlichem molekularen Wasserstoff dargestellt. Es 
wurde aus einzelnen etwa 0,2 eV umfassenden Teil-
stücken zusammengestellt, da in einer Aufnahme 
nur über einen Energiebereich dieser Größe ein 
ausreichendes Auf lösungsvermögen erreicht werden 
konnte. D ie Anpassung der Einzelaufnahmen an-
einander erfolgte über die integralen Intensitäten. 
Auf eine Normierung des Spektrums auf gleiche 
Auf lösung der einzelnen Teilstücke wurde verzichtet. 
Der maximale Streuwinkel betrug ??max = 1,1 • 1 0 ~ 4 , 
die Energie der Primärelektronen 3 0 keV. 

Die in die A b b . 3 eingezeichneten Elektronen-
sprungbanden konnten mit Hilfe der Daten aus A b -
s o r p t i o n s m e s s u n g e n v o n DIEKE U , TANAKA 1 2 , N A -

MIOKA 1 3 und MONFILS 14 identifiziert werden. 
Eine eindeutige Zuordnung des Energieverlustes 

bei 14 ,85 eV war nicht möglich, vermutlich gehört 
dieser zur B " 5 p o 1^'u + -Bande. Die in das Spektrum 
eingezeichneten energetischen Lagen beziehen sich 

auf die stärksten der zu erwartenden Rotationsüber-
gänge. In den B-Banden sind dies die Übergänge 
/ = 1 - > = 2 und in den C-Banden / = 1 —> = 1 
und 7 = 1 — > ] ' = 2. Das Spektrum zeigt klar ge-
trennte Schwingungsbanden mit Rotationsstruktur. 
Besonders gut sind die Intensitätsverteilungen in-
nerhalb der LYMAN- und WERNER-Banden zu erken-
nen. 

E 

Abb. 4. Energieverlustspektrum von para-Wasserstoff im Be-
reich zwischen 11,7 und 13 eV; 30 keV-Elektronen. 

E -

Abb. 3. Energieverlustspektrum des molekularen Wasserstoffs (natürliches Gemisch von ortho- und para-Wasserstoff) 
im Bereich zwischen 11 und 15 eV; 30 keV-Elektronen. 

1 1 H . D I E K E , J. Mol. Spectr. 2 , 494 [1958]. 14 A. M O N F I L S , J. Mol. Spectr. 1 5 , 265 [1965]. 
12 Y. T A N A K A , Sei. Papers Inst. Phys. Chem. Res. Tokyo 4 2 , 13 T. N A M I O K A , J. Chem. Phys. 4 0 , 3154 [1964]; 4 1 , 2141 

49 [1944]. [1964]. 



Tab. 1. Im Energieverlustspektrum von molekularem Wasserstoff beobachtete Elektronensprungbanden 
(Ubergänge vom Grundzustand X lso . 

B 2 p (T - ( L Y M A N - ) B a n d e n V = 0 . . . 13, (14), 1 5 . . . 19, (20,21), 22 
B' S p c r 1 ^ -Banden V = (0,1), 2 . . . 4 , (5,6) 
B ' ' 4 p er -Banden V = (0), 1 
C 2 p jr l n u - ( W E R N E R - ) B a n d e n V = 0...6, (7), 8(9), 10, ( 1 1 . . . 13) 
D 3 p?r 1 n u -Banden V = 0, (1), 2, 3 
D ' 4 p?r 1 n u -Banden V = (0), 1 

In A b b . 4 ist das Energieverlustspektrum von 
para-Wasserstoff 1 5 dargestellt. Markiert sind in die-
sem Spektrum in allen Fällen die Lagen der Uber-
gänge 7 = 0 — 1 . Die Änderung der Rotations-
struktur gegenüber der des natürlichen Gemisches 
beider Modif ikationen fällt sogleich ins Auge . Ge-
wisse Unregelmäßigkeiten im Intensitätsverlauf der 
LYMAN-Banden ( z .B . Intensitätszunahme von i / = 1 0 
nach v = 1 1 ) treten noch deutlicher hervor als im 
Spektrum des natürlichen Wasserstoffs. 

Im Energieverlustspektrum des natürlichen Was-
serstoffs zwischen 11 ,1 und 14,9 e V konnten die in 
Tab. 1 aufgeführten Banden beobachtet werden. 

Die in Tab . 1 in Klammern angegebenen Banden 
überlagern sich mit dicht benachbarten und wurden 
einzeln nicht aufgelöst. Aus dem Intensitätsverlauf 
in den Elektronensprungbanden kann jedoch indirekt 
geschlossen werden, daß diese Banden angeregt wer-
den. 

W i e schon früher beobachtet 1 , macht sich im 
Energieverlustspektrum die Prädissoziation i m Be-
reich £ > 1 4 , 7 e V im Gegensatz zu optischen A b -
sorptionsmessungen nicht bemerkbar. Während der 
Absorptionskoeff iz ient in der Nähe von 14,7 eV u m 

15 Für die Überlassung des para-Wasserstoffs danken wir 
Dipl.-Ing. 0 . BOSTANJOGLO. 

1 6 G . R. C O O K U. P. H . M E T Z G E R , J. Opt. Soc. Amer. 5 4 , 9 6 8 

[ 1 9 6 4 ] , 
17 R. S. M U L L I K E N U . C . A. R I E K E , Rep. Progr. Phys. 8 , 2 3 1 

[ 1 9 4 1 ] , 

etwa zwei Größenordnungen zun immt 1 6 , ist im 
Energieverlustspektrum (Abb . 3 ) nicht einmal die 
Andeutung einer solchen Stufe zu erkennen. Dieser 
Effekt muß als wesentlicher Unterschied zu den Er-
gebnissen von Lichtabsorptionsmessungen angesehen 
werden! 

> 
a) Elektronenübergangsmoment und Dipolstärken 

Für die Bestimmung der Elektronenübergangs-
momente kommen nur die drei nahezu vollständig 
aufgenommenen Banden, die LYMAN-, die WERNER-
und die B'-Banden, in Betracht. Die Auswertung der 
Spektren erfolgt nach der Vorschrift der Gl. ( 6 ) 
durch Summation der Intensitäten der Rotations-
schwingungsbanden und Umrechnung nach Gl. ( 1 ) . 

Die experimentellen und theoretischen Werte für 
die Dipolstärke 

D=f2\%(R0)\* ( 7 ) 

in Einheiten von a 0 2 sind in die Tab. 2 eingetragen. 
Im Gegensatz zur vorangegangenen A r b e i t 1 werden 
in der Tabelle Dipolstärken und nicht Oszillatoren-
stärken der Elektronensprungbanden miteinander 

1 8 H . S H U L L , J . Chem. Phys. 2 0 , 1 8 [ 1 9 5 2 ] . 
1 9 S . E H R E N S O N U . P . E. PHILLIPSON, J . Chem. Phys. 3 4 , 1 2 2 4 

[ 1 9 6 1 ] . 

2 0 J . M . P E E K U . E . N . L A S S E T T R E , J . Chem. Phys. 3 8 , 2 3 9 2 

[ 1 9 6 3 ] . 

D B K Dc/al Db+CK DB'/al 

Theoretische Werte 
ROSCOE 6 0,744 1,260 2,004 
MULLIKEN, R I E K E 1 7 j 

0,798 
0,698 

1,203 
1,171 

2,001 
1,869 

0,128 

SHULL 1 8 0,599 1,329 1,928 
EHRENSON, PHILLIPSON 1 9 0,914 
P E E K , LASSETTRE 2 0 0,974 0,805 1,779 0,040 

Experimentelle Werte 
diese Arbeit 0,947 0,919 1,866 0,077 
GEIGER 1 0,840 1,026 1,866 

Tab. 2. Theoretische und experimentelle Dipolstärken D. 



verglichen. Hierdurch wird vermieden, daß eine 
mittlere Anregungsenergie der Elektronensprung-
bande eingeführt werden muß. Der Wert DQ nach 
ROSCOE 6 wurde entsprechend der Bemerkung in Ab -
schnitt 1 a korrigiert. 

Die Dipolstärken der vorliegenden Arbeit wurden 
auf den Wert Z)ß + De = 1 ,866 a 0 2 normiert. 

Es ergibt sich in Ubereinstimmung mit 1 , daß die 
Dipolstärken für die Anregung des B- und C-Zu-
standes ungefähr gleich sind. Der erstmals experi-
mentell ermittelte Relativwert der Dipolstärke Z)ß' 
liegt fast genau in der Mitte zwischen dem theore-
tischen Wert von MULLIKEN und RIEHE und dem 
von PEEK und LASSETTRE. ES kann also nicht zwi-
schen diesen beiden Werten entschieden werden. 

b) Relative Intensitäten der Schwingungsübergänge 
Die Intensitäten der Schwingungsübergänge wur-

den durch graphische Integration gewonnen. In eini-
gen Fällen, wenn sich die Peaks aus mehreren Über-
gängen zusammensetzen (eingeklammerte Werte in 
der Tab . 1 ) , war es notwendig, Interpolationen vor-
zunehmen. A u s diesen Intensitäten im Energiever-
lustspektrum wurden nach Gl. (1) die relativen Ban-
denstärken po, v'/\ I2 errechnet (Tab. 3 ) . Die 

Theoretische Experimentelle 

v' Ra,v' 
Werte qo,V' Werte^o.r' /\Wo)\2 

v' 
Ä NICHOLLS W K B -

GEIGER1 diese 
22 Verfahren GEIGER1 

Arbeit 

0 0 , 9 1 8 0 , 0 0 7 [ 0 , 0 1 2 ] 0 , 0 0 9 0 , 0 0 7 

1 0 , 9 0 0 0 , 0 2 9 [ 0 , 0 1 8 ] 0 , 0 1 6 0 , 0 2 7 

2 0 , 8 8 3 3 0 , 0 6 8 0 , 0 4 4 0 , 0 3 3 0 , 0 5 1 

3 0 , 8 6 9 2 0 , 1 1 2 0 , 0 6 0 0 , 0 5 1 0 , 0 6 4 

4 0 , 8 5 3 8 0 , 1 4 3 0 , 0 7 2 0 , 0 7 2 0 , 0 8 9 

5 0 , 8 3 7 3 0 , 1 5 3 0 , 0 8 1 0 , 0 8 6 0 , 1 0 5 

6 0 , 8 2 0 7 0 , 1 4 2 0 , 0 8 3 0 , 0 9 1 0 , 1 0 7 

7 0 , 8 0 3 8 0 , 1 1 7 0 , 0 8 4 0 , 0 9 8 0 , 0 9 9 

8 0 , 7 9 1 0 0 , 0 8 8 0 , 0 8 2 0 , 0 9 8 0 , 0 8 3 

9 0 , 7 7 4 8 0 , 0 6 0 0 , 0 7 5 0 , 0 9 6 0 , 0 7 4 

1 0 0 , 7 6 2 9 0 , 0 3 7 0 , 0 7 5 0 , 0 5 0 

1 1 0 , 7 4 9 1 0 , 0 2 1 0 , 0 6 3 0 , 0 7 0 0 , 0 5 4 

1 2 0 , 7 3 4 7 0 , 0 1 1 0 , 0 5 5 0 , 0 3 5 

1 3 0 , 7 2 4 4 0 , 0 0 5 0 , 0 6 2 0 , 0 5 1 0 , 0 3 9 

1 4 0 , 7 1 1 7 0 , 0 4 2 

1 5 0 , 6 9 8 1 0 , 0 3 4 0 , 0 3 5 0 , 0 2 3 

1 6 0 , 6 8 7 3 0 , 0 2 9 0 , 0 1 9 

1 7 0 , 6 8 3 2 0 , 0 3 0 0 , 0 1 1 

1 8 0 , 6 7 3 2 0 , 0 2 5 0 , 0 1 0 

1 9 0 , 6 6 4 4 0 , 0 2 1 0 , 0 0 6 

2 0 0 , 6 4 8 3 0 , 0 1 8 0 , 0 0 5 

Tab. 3. Theoretische FRANCK-CoNDON-Faktoren <?o, v , Ä-Cen-
troid Ro, v' und experimentelle normierte Bandenstärken 

Po, v/1 (Ro) |2 fü r d ie LYMAN-Banden. 

21 E. H U T C H I S S O N , Phys. Rev. 37, 45 [1931]. 
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Po,v'/\ 9 t e ( # o ) ! 2 s i n d s 0 normiert , daß sie die Sum-
oo 

menregel 2 Po, v / | ^ e ( / ? o ) | 2 = l erfüllen. 
v' = 0 

Theoretische Werte der Quadrate der Überlap-
pungsintegrale <7o, v liegen für die LYMAN-Banden 
v o n HUTCHISSON 2 1 u n d NICHOLLS 2 2 u n d f ü r d i e W E R -

NER-Banden in 1 vor . Die Berechnung erfolgte in 
allen Fällen mit Hil fe des MoRSE-Potentials. HUT-
CHISSON 2 1 standen seinerzeit nur sehr ungenaue 
spektroskopische Daten zur Ver fügung . Aus diesem 
Grunde sind seine Werte zum Vergleich mit den 
gemessenen Bandenstärken nicht herangezogen wor-
den. 

A b b . 5 zeigt den Vergleich der experimentell für 
die LYMAN-Banden gefundenen Bandenstärken mit 
den in dieser Arbeit mit dem WKB-Ver fahren be-
rechneten FRANCK—C0ND0N-Fakt0ren und mit denen 
v o n NICHOLLS 2 2 . 

0.15 

0,10 
PoV 

IRe(R0)l2 

<70y 
0,05 

0 

Abb. 5. Experimentelle Bandenstärken und theoretische 
FRANCK-CoNDON-Faktoren f ü r d ie LYMAN-Banden. 

Die mit dem MoRSE-Potential berechneten </-Werte 
von NICHOLLS 2 2 stimmen für v = 0 und v = 1 gut 
mit dem Experiment überein. Für größere v er-
geben sich jedoch starke Abweichungen, da die 
maximale Intensität zu kleinen v verschoben ist. 
Für i / > 8 gibt die MoRSE-Funktion viel zu kleine 
FRANCK-CoNDON-Faktoren und ist völl ig unbrauch-
bar . 

Die FRANCK-CoNDON-Faktoren, die mit der R K R -
Potentialkurve nach dem WKB-Ver fahren berechnet 
wurden, besitzen die maximalen Werte bei zu gro-
ßen v', außerdem sind sie bei großen v etwas 
zu g r o ß ; sie geben aber die Unregelmäßigkeit bei 
t / = 12 und t / = 13 wieder (po, i 2<Po , 13) ? nicht da-

22 R. W. N I C H O L L S , Astrophys. J. 141, 819 [1965]. 



gegen die bei v = 10. Die noch verbleibenden Un-
stimmigkeiten müssen teilweise auf die Abhängig -
keit des Elektronenübergangsmoments v o m Kern-
abstand zurückgeführt werden (siehe Abschn. 2 c ) . 

Das WKB-Ver fahren ist für kleine Quantenzahlen 
eine schlechte Näherung. Daher stimmen die FRANCK— 
CoNDON-Faktoren für v ' — 0 und v = 1 sehr schlecht 
mit dem Experiment überein. Aus diesem Grunde 
wurde in A b b . 5 auf eine Berücksichtigung dieser 
Werte verzichtet. 

Die f r ü h e r 1 angegebenen Bandenstärken zeigen 
im Vergleich zu dieser Arbeit eine durch die schlech-
tere Auf lösung vorgetäuschte Intensitätsverschiebung 
zu höheren Schwingungsquantenzahlen v . 

Die Bandenstärken und FRANCK—CoNDON-Faktoren 
für die WERNER-Banden sind in Tab . 4 zusammen-

v' 
Ä 

Theoretische Werte <70,1/ 
Experimentelle 

Werte 
M W | 9 F E ( W 

v' 
Ä 

MORSE-
Poten-

tial1 

WKB-Verfahren 

an-
gepaßt 

GEIGER 1 
diese 

Arbeit 

0 0 , 8 7 1 0 , 1 5 3 [ 0 , 1 5 4 ] 0 , 1 4 3 0 , 1 3 6 

1 0 , 8 2 2 0 , 2 4 1 [ 0 , 1 5 9 ] 0 , 2 3 2 0 , 1 9 9 

2 0 , 7 8 8 0 , 2 2 3 0 , 2 2 0 0 , 1 9 8 0 , 2 2 2 0 , 1 9 8 

3 0 , 7 5 2 0 , 1 6 8 0 , 1 7 1 0 , 1 5 4 0 , 1 4 5 0 , 1 6 2 

4 0 , 7 2 0 0 , 0 9 9 0 , 1 2 7 0 , 1 1 5 0 , 0 9 3 0 , 1 0 2 

5 0 , 6 8 6 0 , 0 5 7 0 , 0 8 0 0 , 0 7 2 0 , 0 5 4 0 , 0 6 2 

6 0 , 6 6 4 0 , 0 2 8 0 , 0 5 7 0 , 0 5 1 0 , 0 3 5 0 , 0 4 2 

7 0 , 6 4 1 0 , 0 1 5 0 , 0 3 8 0 , 0 3 4 0 , 0 3 1 0 , 0 3 4 

8 0 , 6 2 4 0 , 0 2 7 0 , 0 2 4 0 , 0 2 7 0 , 0 3 0 

9 0 , 5 9 8 0 , 0 1 6 0 , 0 1 4 0 , 0 1 8 

1 0 0 , 5 9 1 0 , 0 1 2 0 , 0 1 1 0 , 0 0 7 

1 1 0 , 5 7 6 0 , 0 0 8 0 , 0 0 7 0 , 0 0 5 

1 2 0 , 5 8 0 0 , 0 0 6 0 , 0 0 5 0 , 0 0 3 

Tab. 4._Theoretische FRANCK-CoNDON-Faktoren qo, v' > R-Cen-
troid R0, v' und experimentelle normierte Bandenstärken 

Po, vi I 9\e(-Ro) I2 ^ r die WERNER-Banden. 

gestellt. A b b . 6 veranschaulicht den Vergleich zwi-
schen Theorie und Experiment. Das MoRSE-Poten-
tial führt hier zu erheblich besseren Resultaten als 
bei den LYMAN-Banden. 

W i e bei den LYMAN-Banden müssen auch die nach 
dem WKB-Ver fahren für die WERNER-Banden v = 0 
und v = 1 berechneten FRANCK-CoNDON-Faktoren als 
falsch angesehen werden. Während jedoch die ent-
sprechenden q-Werte für die LYMAN-Banden v = 0 
und v = 1 sehr klein waren und zur Summe nur 
wenig beitrugen, ist das bei den WERNER-Banden 
nicht mehr der Fal l : das M a x i m u m liegt bei v ' = 1 
und v' = 2. Die theoretischen (/-Werte müssen also 

0.25 

0.20 

0.15 

Poy 
I R J R O ) ! 2 

0 / 0 5 

0 

Abb. 6. Experimentelle Bandenstärken und theoretische 
FRANCK-CoNDON-Faktoren f ü r d i e WERNER-Banden. 

neu normiert werden; dies geschieht hier dadurch, 
daß qot2 gleich dem experimentellen Wert 

P O , 2 / | 3 U Ä 0 ) | 2 

gesetzt wird. 

Die Verschiebung der gesamten Verteilungskurve 
zu kleineren Schwingungsquantenzahlen, die durch 
den zu flachen Anstieg des MoRSE-Potentials bei klei-
nen Kernabständen verursacht ist, wird auch bei 
den WERNER-Banden beobachtet. Die Übereinstim-
mung zwischen den experimentellen Bandenstärken 
und den mittels des WKB-Verfahrens aus den R K R -
Potentialkurven berechneten FRANCK-CoNDON-Fakto-
ren ist für i / > 2 befriedigend. 

c) Abhängigkeit der Elektroneneigenjunktion 
vom Kernabstand 

Die im Abschnitt 1 zitierte Gl. (5 ) ist nur gültig, 
wenn das totale Ubergangsmoment 3 t " v sich in ein 
Produkt von Funktionen, die die Elektronenkoordi-
naten und die Kernkoordinaten getrennt enthalten, 
separieren läßt. Genau genommen ist das nicht m ö g -
lich, denn die Elektroneneigenfunktionen sind v o m 
Kernabstand R abhängig und die Bandenstärke p 
muß nach Gl. ( 4 ) geschrieben werden 



Näherungsweise kann die Abhängigkeit des Elektro-
nen-Ubergangsmoments v o m Kernabstand durch die 
Methode des Ä-Centro ids 2 3 berücksichtigt werden. 
Dazu wird angenommen, daß sich langsam 
ändert und das Produkt (pv{R) <pv'(R) ein so star-
kes M a x i m u m bei R = Rv> v' besitzt, daß es bei der 
Integration als ^-Funktion aufgefaßt werden kann: 

<Pv(R) <Pv(R) 
f <Pv(R) <Pv (R) dR 

Ö(R-RV>V'). (8) 

Der Faktor (f<pv(R) <pv'(R) d R ) ' 1 dient der Nor -
mierung. 

C — / D\ D „ / n\ ,] D 

(9) " Ö , = f<Pv(R) R <Pv(R) DR 
v , v f <Pv (R) <Pv (R) AR 

ist das Ä-Centroid für den Übergang v —>• v . Sub-
stitution von Gl. ( 8 ) in Gl. ( 4 ) und Integration er-
gibt 

Pv,v' = qv,v'\ ( 1 0 ) 

| |2 kann also bestimmt werden, wenn ex-
perimentelle Bandenstärken pV)V' und berechnete 
FRANCK-CoNDON-Faktoren qv>v' sowie das Integral 
/ cpv(R) R<pv'(R) dR_ bekannt sind. 

Die 7?-Centroids Rv>v' wurden mittels der nach 
dem WKB-Ver fahren erhaltenen Schwingungseigen-
funktionen berechnet. Sie sind in den Tab. 3 und 4 
aufgeführt. D ie Abhängigkeit des Elektronen-Uber-
gangsmoments , bezogen auf |9t e (^o)| v o m ^ -Cen-
troid, zeigt die A b b . 7 für die LYMAN- und WERNER-

10 
l®JR0y)l 

0,5 

° ° Werner-Banden • 

0 6 0,7 Oß 0,9 & 

Abb. 7. Abhängigkeit des Elektronen-Ubergangsmoments vom 
7?-Centroid Rv, v' für die LYMAN-Banden (•) und die W E R N E R -

Banden (o) . 

Banden. Die eingetragenen Punkte streuen ziemlich 
stark. Diese Streuung kann nicht nur durch die Meß-
fehler, sondern auch durch die Fehler bei den W K B -
Schwingungseigenfunktionen bedingt se in 2 4 . Wären 
die MoRSE-Eigenfunktionen verwendet worden, so 
hätten sich für kleine Rv>v' (also große v ) ganz 
sinnlose Resultate ergeben. 

Nach A b b . 7 scheint das Elektronen-Übergangs-
moment für die WERNER-Banden v o m Kernabstand 
nahezu unabhängig zu sein, wenn auch eine gewisse 
Undulation vorhanden ist. Diese kann jedoch nicht 
als ganz gesichert betrachtet werden. Für die LYMAN-
Banden zeigt A b b . 7 eine deutliche Abhängigkeit 
von Rv> v' in der Weise , daß das Elektronen-Über-
gangsmoment für hohe Schwingungsquantenzahlen v 
kleiner wird. Dieses Ergebnis läßt sich auch fol -
gendermaßen interpretieren: Für Übergänge v o m 
Grundzustand in den C-Zustand ist das FRANCK-
CONDON-Prinzip im großen und ganzen zutreffend, 
während bei Übergängen zum B-Zustand in hohe 
Schwingungsniveaus Abweichungen von diesem Prin-
zip zu beobachten sind. 

Es leuchtet ein, daß das Elektronenübergangs-
moment für den B- und eventuell für den C-Zu-
stand mit abnehmendem R kleiner werden muß, 
denn für R - > 0 muß die Summe den kleineren 
Wert für die Anregung des 2 1P-Zustands des He-
liums erreichen. 

Herrn Prof. Dr. H. BOERSCH sind wir für die An-
regung zu dieser Arbeit und sein förderndes Interesse 
sehr zu Dank verpflichtet. Der Senator für Wirtschaft 
von Berlin unterstützte diese Arbeit durch Bewilligung 
von ERP-Mitteln in dankenswerter Weise. 

Anhang 

Zur Berechnung der Schwingungseigenfunktionen 
nach dem WKB-Verfahren 

KRAMERS 25 findet für die noch nicht normierten 
Eigenfunktionen der Schwingungszustände v 

R 

J ^ _ c o s I 1 f 1 / 2 u (El-VsI d R - -
4 <Pv(R) = [2 fi(Ev- Tyücos[h 

if, 

IL 

* jV2//(£t, - F ) dR-

( A I ) 

23 P. A . F R Ä S E R , Can. J . Phys. 3 2 , 5 1 5 [ 1 9 5 4 ] . 
24 Es muß ausdrücklich darauf hingewiesen werden, daß alle 

Schlüsse bezüglich der Abhängigkeit des Elektronenüber-
gangsmoments vom Kernabstand zur Voraussetzung haben, 
daß die mit den RKR-Potentialkurven nach dem WKB-
Verfahren berechneten Überlappungsintegrale korrekte 
Werte geben. Ein hier etwa entstehender Fehler kann zur 

Zeit nicht abgeschätzt werden. Aus diesem Grunde_wurde 
audi verzichtet, eine Korrektur zur Funktion | ${ e (Rv , v-) |, 
die von P. H A L E V I (Proc. Phys. Soc. 86, 1 0 5 1 [ 1 9 6 5 ] ' ) an-
gegeben wurde, und für die sich für die LYMAN-Banden 
maximal ± 10% ergibt, zu berücksichtigen. 
H . A. K R A M E R S , Z. Phys. 3 9 , 8 2 8 [ 1 9 2 6 ] . 



Hierin bedeuten ß die effektive Masse des Moleküls, 
V(R) die potentielle Energie und Ev die Energieeigen-
werte. 

In der Nähe der klassischen Umkehrpunkte RM'M 
und Rmax ist ( A I ) nicht mehr gültig, denn mit ver-
schwindendem Ev — V wird (pv unendlich groß. In die-
sem Gebiet werden die Eigenfunktionen in der Nähe 
von 7?min durch 

<Pv (R) = a m i n * ß(otmin — /?min]) 

und in der Nähe von Rmax durch 

^ ( 7 ? ) = a ~ a x Q (^max [ « m a x - Ä ] ) 

( A 2 ) 

( A 3 ) 

gegeben. amin,max ist für jedes v durch die Steigung 
der Potentialkurve in den zugehörigen Umkehrpunk-
ten /?min und Rmax bestimmt. 

Die Funktion ß ( £ ) ist von VAN DER HELD berechnet 
worden und in der Arbeit von KRAMERS 25 tabelliert. 

Die numerische Rechnung verlangte noch folgende 
Näherungen: 

1. Zur Interpolation der Zwischenwerte der Poten-
tialkurve9 wurde für t/ = 0 . . . 1 3 ein Polynom durch 
die gegebenen Punkte der Potentialkurve gelegt, die 

weiteren Zwischenwerte wurden durch parabolische In-
terpolation gewonnen. 

2. Die Interpolation der Zwischenwerte der Hilfs-
funktion ü ( £ ) erfolgte für negatives Argument mit-
tels eines Exponentialansatzes, für positives wurde 
parabolische Interpolation verwendet. 

3. Die Steigung der Potentialkurve zur Bestimmung 
von cimin, max wurde für v = 0 und 1 graphisch ermit-
telt. Für größere Schwingungsquantenzahlen v fand 
ein von BEWERSDORFF 26 vorgeschlagenes Verfahren Ver-
wendung, das gleichzeitig einen guten Anschluß der 
Funktionsteile aneinander gewährleistet. Es wurde der 
erste und letzte Knoten der Eigenfunktion bei R x und 
R2 benutzt: 

ßMIN — 
2 ,34 

Ri — Ru 
und a 2,34 

•Rmax R* 
( A 4 ) 

mit £ = 2,34 der Nullstelle der Hilfsfunktion £? (£ ) , 
und an diesen Knoten die Funktionen angeschlossen. 

4. Die Schwingungseigenfunktion t> = 0 des Grund-
zustandes wurde nach MORSE in geschlossener Form 
beredinet und die dazu notwendigen spektroskopischen 
Daten den Tabellen in 27 entnommen. 

2 6 0 . BEWERSDORFF, Z. Phys. 103, 598 [ 1 9 3 6 ] . 27 G. HERZBERG, Spectra of Diatomic Molecules, D. Van Nost-
rand Co., Princeton —London —Toronto 1950. 

Oberflächenwellen im Elektronenplasma 
D . WAGNER 

Institut für Theoretische Physik der Universität zu Köln 

(Z. Naturforschg. 21 a, 634—642 [1966] ; eingegangen am 2. Dezember 1965) 

The linearized BoLTZMANN-VLAsov-equation is solved for a semi-infinite degenerate plasma and 
a plasma within a layer. It is shown, that the surface oscillations first discussed by RITCHIE have 
a linear dependence on the wave vector and are damped. 

Die Existenz von Oberflächenwellen in einem Elek-
tronenplasma wurde zuerst von RITCHIE 1 diskutiert. 
Er zeigte, daß es in einem Halbraum Anregungen 
mit der Frequenz .cop / j /2 gibt, wenn a>p die klassi-
sche Plasmafrequenz ist. Diese Anregungen haben 
den Charakter von Oberflächenwellen. RITCHIE be-
handelte das Elektronengas im Rahmen der BLOCH-
schen hydrodynamischen Gleichungen, die im Ver-
gleich zur BoLTZMANN-Gleichung den Vortei l größe-
rer Einfachheit haben. Jedoch lassen sich die hydro-
dynamischen Gleichungen nur approximativ aus der 
korrekteren BoLTZMANN-Gleichung ableiten; dabei 

1 R. H. RITCHIE, Phys. Rev. 106, 874 [1957]. 
2 V. L. GINZBURG, Propagation of Electromagnetic Waves in 

Plasma, Verlag Gordon and Breach, New York 1961. 

liegt die Problematik in dem hydrostatischen Druck-
glied der hydrodynamischen Gleichungen 2 , das sei-
nerseits die räumliche Ausbreitung der Wellen im 
Plasma beschreibt. Daher sind bei der genaueren 
Behandlung der Oberflächenwellen nach der BOLTZ-
MANN-Gleichung Korrekturen in der Dispersion der 
Oberflächenwellen zu erwarten. Nach RITCHIE 3 sollte 
ihre Eigenfrequenz in erster Näherung (lange Wel -
len) linear v o m Wellenvektor abhängen, nach KANA-
ZAWA 4 quadratisch. KANAZAWAS Rechnung folgt der 
Behandlung der gewöhnlichen Plasmawellen von 
NOZIERES und PINES 5, und zwar mit der Modif iz ie-

3 R. H. RITCHIE, Progr. Theor. Phys. 29, 607 [1963]. 
4 H. KANAZAWA, Progr. Theor. Phys. 26, 851 [1961]. 
5 P. NOZIERES U. D. PINES, Phys. Rev. 109, 741 [1958]. 


